Question Bank - Mathematics

Here's the question bank on all the mathematics topics.

Consider the following statements :1. Dot product over vector addition is distributive2. Cross product over vector addition is distributive3. Cross product of vectors is associativeWhich of the above statements is/are correct ?

A.
1 only
B.
2 only
C.
1 and 2 only
D.
1, 2 and 3

Solution:

Concept:One algebraic property of real numbers is the distributive law. The distributive law for the real numbers says: "For all real numbers x, y, and z, \(x.( y+ z)=x. y+ x.z\)The vector dot product is distributive over addition. In general: \(\vec a.( \vec b+ \vec c)=\vec a. \vec b+ \vec a.\vec c\) The vector cross product is distributive over addition. In general: \(\vec a × (\vec b + \vec c) = \vec a × \vec b + \vec a × \vec c\)Associative property: (p × q) × r = p × (q × r) (where p, q, and r are any three natural/whole numbers)Calculation:Let\(\displaystyle \vec a = a_x \overline i+a_y \overline j+a_z \overline k\\\vec b = b_x \overline i+b_y \overline j+b_z \overline k\\\vec c = c_x \overline i+c_y \overline j+c_z \overline k\)Statement I: Dot product over vector addition is distributiveWe have to prove \(\vec a.( \vec b+ \vec c)=\vec a. \vec b+ \vec a.\vec c\)\(\displaystyle \vec a.( \vec b+ \vec c)=(a_x ? i+a_y ? j+a_z ? k).[(b_x ? i+b_y ? j+b_z ? k)+(c_x ? i+c_y ? j+c_z ? k)] \)\(\displaystyle \vec a.( \vec b+ \vec c)=(a_x ? i+a_y ? j+a_z ? k).[(b_x+c_x)? i+(b_y+c_y)? j+(b_z +c_z )? k] \)\(\vec a.( \vec b+ \vec c)=\) ax (bx + cx) + ay (by + cy) + az (bz + cz)\(\vec a.( \vec b+ \vec c)=\) ax bx + ax cx + ay by + ay cy + az bz + az cz................................... (1)\(\displaystyle \vec a. \vec b+ \vec a.\vec c=(a_x ? i+a_y ? j+a_z ? k).(b_x ? i+b_y ? j+b_z ? k)+(a_x ? i+a_y ? j+a_z ? k).(c_x ? i+c_y ? j+c_z ? k)\)\(\displaystyle \vec a. \vec b+ \vec a.\vec c=(a_x ? i+a_y ? j+a_z ? k).(b_x ? i+b_y ? j+b_z ? k)+(a_x ? i+a_y ? j+a_z ? k).(c_x ? i+c_y ? j+c_z ? k)\) \(\displaystyle \vec a. \vec b+ \vec a.\vec c=(a_x.b_x+a_y.b_y +a_z.b_z)+(a_x.c_x +a_y.c_y+a_z.c_z)\)\(\vec a. \vec b+ \vec a.\vec c=\) ax bx + ax cx + ay by + ay cy + az bz + az cz................................... (2)From equation (1) and (2)? \(\vec a.( \vec b+ \vec c)=\vec a. \vec b+ \vec a.\vec c\) Statement II: Cross product over vector addition is distributiveWe have to prove \(\vec a × (\vec b + \vec c) = \vec a × \vec b + \vec a × \vec c\)\(\displaystyle \vec a\times(\vec b+ \vec c)=(a_x ? i+a_y ? j+a_z ? k)\times[(b_x ? i+b_y ? j+b_z ? k)+(c_x ? i+c_y ? j+c_z ? k)] \)?\(\displaystyle \vec a\times( \vec b+ \vec c)=(a_x ? i+a_y ? j+a_z ? k)\times[(b_x+c_x)? i+(b_y+c_y)? j+(b_z +c_z )? k] \)?\(\vec a\times( \vec b+ \vec c)=\begin{bmatrix} \overline i & \overline j & \overline k \\[0.3em] a_x & a_y & a_z \\[0.3em] b_x+c_x &b_y+c_y & b_z+c_z \end{bmatrix}\)\(\vec a\times( \vec b+ \vec c)=\) ??i? [ay (bz + cz) - az (by + cy)] + j? [ax (bz + cz) - az (bx + cx)] + k? [ax (by + cy) - ay (bx + cx)] ............(3) \(\displaystyle \vec a\times \vec b+ \vec a\times\vec c=(a_x ? i+a_y ? j+a_z ? k)\times(b_x ? i+b_y ? j+b_z ? k)+(a_x ? i+a_y ? j+a_z ? k)\times(c_x ? i+c_y ? j+c_z ? k)\)\(\displaystyle \vec a\times \vec b+ \vec a\times\vec c=\begin{bmatrix} ? i & ? j & ? k \\[0.3em] a_x & a_y & a_z \\[0.3em] b_x &b_y& b_z \end{bmatrix}+\begin{bmatrix} ? i & ? j & ? k \\[0.3em] a_x & a_y & a_z \\[0.3em] c_x &c_y& c_z \end{bmatrix}\)\((\vec a\times \vec b+\vec a\times \vec c)=\) ??i? [aybz - azby)] - j? (axbz - azbx)] + k? [ax by - aybx] + i? [aycz - azcy)] - j? (axcz - azcx)] + k? [ax cy - aycx]\((\vec a\times \vec b+\vec a\times \vec c)=\) i? [ay (bz + cz) - az (by + cy)] + j? [ax (bz + cz) - az (bx + cx)] + k? [ax (by + cy) - ay (bx + cx)] ..............(4) ? \(\vec a × (\vec b + \vec c) = \vec a × \vec b + \vec a × \vec c\)Statement III: Cross product of vectors is associativeConsider two non-zero perpendicular vectors, a and b.We have (a × a) × b = 0 × b = 0However, a × b is perpendicular to a and is not the zero vector, soa × (a × b) ? 0(a × a) × b ? a × (a × b)Cross product of vectors is not associative? Only Statements I and II are correct.

For more questions,

Click Here

Download Gyanm App

free current affairs for competitive exams

Scan QR code to download our App for
more exam-oriented questions

free current affairs for competitive exams

OR
To get link to download app

Thank you! Your submission has been received. You will get the pdf soon. Call us if you have any question: 9117343434
Oops! Something went wrong while submitting the form.