Question Bank - Mathematics

Here's the question bank on all the mathematics topics.

If \(A = \begin{bmatrix} 2 \sin \theta & \cos \theta & 0 \\ -2\cos \theta & \sin \theta & 0 \\ -1 & 1 & 1 \end{bmatrix},\) then what is A(adj A) equal to?(where) I is the identity matrix.

A.
Null matrix
B.
#NAME?
C.
I
D.
2I

Solution:

Concept:Expansion of determinant \(\begin{vmatrix}a_{11} & b_{12} & c_{13} \\ a_{21} & b_{22} & c_{23} \\ a_{31} & b_{32} & c_{33} \end{vmatrix}\) is given by ? = a11 a22 a33 - a11 a23 a32 - a12 a21 a33 + a12 a23 a31 + a13 a21 a32 - a13 a31 a22A(adj A) = ? A ? I, where I is the identity matrix.Calculation:Given: \(A = \begin{bmatrix} 2 \sin ? & \cos ? & 0 \\ -2\cos ? & \sin ? & 0 \\ -1 & 1 & 1 \end{bmatrix} \) and I is the identity matrix.? \(\mid A\mid = \begin{vmatrix} 2 \sin ? & \cos ? & 0 \\ -2\cos ? & \sin ? & 0 \\ -1 & 1 & 1 \end{vmatrix}\)Expanding about a3,3, we get,? ? A ? = 1{(2 sin? × sin?) + 2 cos2?}? ? A ? = 2(2 sin2? + 2 cos2?)? ? A ? = 2(sin2? + cos2?)? ? A ? = 2 [sin2? + cos2? = 1]? A(adj A) = ? A ? IPutting the value of ? A ? = 2,? A(adj A) = 2I, where I is the identity matrix.? A(adj A) = 2I

For more questions,

Click Here

Download Gyanm App

free current affairs for competitive exams

Scan QR code to download our App for
more exam-oriented questions

free current affairs for competitive exams

OR
To get link to download app

Thank you! Your submission has been received. You will get the pdf soon. Call us if you have any question: 9117343434
Oops! Something went wrong while submitting the form.