Question Bank - Mathematics

Here's the question bank on all the mathematics topics.

What is \(\int^{\frac{\pi}{4}}_0 \frac{dx}{(\sin x + \cos x)^2}\) equal to?

A.
\(-\frac{1}{2}\)
B.
\(\frac{1}{2}\)
C.
1
D.
\(\frac{3}{2}\)

Solution:

Concept:\(\displaystyle \int \ x^n\ dx = \frac{x^{n+1}}{n+1}+C, n\neq -1\)Calculation:\(\displaystyle \int^{\frac{?}{4}}_0 \frac{dx}{(\sin x + \cos x)^2}\)We know that \(\displaystyle tan\ x =\frac{sin\ x}{cos\ x}\) ? \(\displaystyle sin\ x =\frac{tan\ x}{sec\ x}\) and \(\displaystyle cos\ x =\frac{1}{sec\ x}\)? \(\displaystyle I= \int^{\frac{?}{4}}_0 \frac{dx}{(\frac{tan\ x}{sec\ x} +\frac{1}{sec\ x})^2}\)? \(\displaystyle I= \int^{\frac{?}{4}}_0 \frac{{sec^2\ x}\ dx}{(\tan x + 1)^2}\)Let tan x = t ? sec2x dx = dtWhen x = 0 ? t = tan 0 ? t = 0When x = ?/4 ? t = tan ?/4 ? t = 1Let us now substitute the 't' value and dt value in the given expression for integration.? \(\displaystyle I= \int^{1}_0 \frac{dt}{(1+t)^2}\)Let (1 + t) = v ? dv = dt When t = 0 ? v = 1 + 0 ? v = 1When t = 1 ? v = 1 + 1 ? v = 2Let us now substitute the 'v' value and dv value in the given expression for integration.? \(\displaystyle I= \int^{2}_1 \frac{dv}{v^2} \)Using \(\displaystyle \int \ x^n\ dx = \frac{x^{n+1}}{n+1}+C, n\neq -1\),? \(\displaystyle I=\left[ \frac{-1}{v}\right ]_1^2 \)? \(\displaystyle I=\left[ \frac{-1}{2}- \frac{-1}{1}\right ] \) = 1/2? \(\displaystyle \int^{\frac{?}{4}}_0 \frac{dx}{(\sin x + \cos x)^2}=\frac{1}{2}\)

For more questions,

Click Here

Download Gyanm App

free current affairs for competitive exams

Scan QR code to download our App for
more exam-oriented questions

free current affairs for competitive exams

OR
To get link to download app

Thank you! Your submission has been received. You will get the pdf soon. Call us if you have any question: 9117343434
Oops! Something went wrong while submitting the form.