Here's the question bank on all the mathematics topics.
Consider the following two statements with respect to the matrices Am×n, Bn×m, Cn×n, and Dn×nStatement 1: tr(AB) = tr(BA)Statement 2: tr(CD) = tr(DC)where tr() represents the trace of a matrix. Which one of the following holds?
The correct answer is option 3.Concept:The trace of a matrix is the sum of the diagonal elements of the matrix. In this question, property of trace is used that is the trace of the product (AB) = trace of the product (BA)Statement I: tr(Am x n x Bn x m) =tr(Bm x n x An x m)\(\\A= {\begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \end{bmatrix} }_{2\times3}, B= {\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3&6 \end{bmatrix}}_{3 \times 2} \\tr(AB)= {\begin{bmatrix} 14 & 22 \\ 32 & 77 \end{bmatrix} }_{2\times 2} =14+77 =91 \\\\tr(BA)= {\begin{bmatrix} 17 & 22 & 27 \\ 22 & 29 &36 \\27 & 36& 45 \end{bmatrix} }_{3\times 3} =17+19+45=91 \)Hence statement 1 is true.Statement II: tr(An x n x Bn x n) =tr(Bn x n x An x n)\(\\ C= {\begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix} }_{2\times2}, D= {\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}}_{2 \times 2} \\tr(AB)= {\begin{bmatrix} 8 & 12 \\ 18 & 26 \end{bmatrix} }_{2\times 2} =8+26 =34 \\\\tr(BA)= {\begin{bmatrix} 8 & 12 \\ 18 & 26 \end{bmatrix} }_{2\times 2} =26+8=34 \)Hence statement II is also true.Hence the correct answer is Both Statement 1 and Statement 2 are correct.
Scan QR code to download our App for
more exam-oriented questions
OR
To get link to download app