Here's the question bank on all the mathematics topics.
Find the value of \(\rm \int ({{1+sinx}\over cos^2x} +e^{3x} +3^x)dx\)
Concept:Some useful formulas are:? sec2x dx = tanx + C ? tanx secx dx = secx + C\(\rm {1\over cos^2x} = sec^2x\)\(\rm {sinx \over cosx } = tanx\) ? eax dx = \(\rm e^{ax} \over a\) + C ? ax dx = \(\rm {a^{x} \over ln \ a} + C\), a>0 and a ? 1Calculation:\(\rm \int ({{1+sinx}\over cos^2x} +e^{3x }+3^x)dx\)= \(\rm \int ({1\over cos^2x } +{sinx\over cos^2x}+e^{3x }+3^x)dx\)= \(\rm \int ({sec^2x+secx \ tanx} )dx+\int e^{3x} \ dx +\int 3^xdx\)= tanx + secx + \(\rm {e^{3x}\over 3} +{ \frac{3^x} {ln 3}}\)+ C, where C is the constant of integration
Scan QR code to download our App for
more exam-oriented questions
OR
To get link to download app