Here's the question bank on all the mathematics topics.
Find the value of \(\rm \int (x-1) \sqrt x \ dx \)
Concept:Some useful formulas are:\(\rm ? x^n dx = \frac {(x^{n+1})} {(n+1)} +C; \ n?1\)Calculation:\(\rm \int (x-1) \sqrt x \ dx \)= \(\rm \int x \sqrt x \ dx - \int \sqrt x \ dx\)= \(\rm \frac{x^{(\frac{3}{2}+1)}}{\frac{3}{2}+1} - \frac{x^{(\frac{1}{2}+1)}}{\frac{1}{2}+1}+C\) , where C is the constant of integration= \(\rm \frac{2}{5} x^\frac{5}{2}-\frac{2}{3} x^\frac{3}{2} + C\)= \(\rm 2 x^\frac{3}{2}(\frac{x}{5}-\frac{1}{3}) + C\)= \(\rm \frac{2}{15} x^\frac{3}{2}(3x - 5) + C\)
Scan QR code to download our App for
more exam-oriented questions
OR
To get link to download app