Here's the question bank on all the mathematics topics.
If xi | fi, i = 1, 2,...n is a frequency distribution with variance 2, mode 24 and arithmetic mean 25, then the mean square deviation from the mode is:
GivenVariance = 2Mode = 24Arithmetic mean = 25FormulaVar(X) = (1/n)?(xi - x?)2CalculationVar(X) = (1/n)?(xi - x?)2? 2 = (1/n)?(xi - 25)2? 2n = ?xi2 + 625n - 50?xi? 2n = ?xi2 + 625n - 50(?xi/n) × n? 2n = ?xi2 + 625n - 50n × 25 {?xi/n = mean = 25}? 2n = ?xi2 - 625n? ?xi2 = 627nMean square deviation = MSD = (1/n)?(xi - Z)2 here Z = Mode? MSD = (1/n)?(xi - 24)2? (1/n)?(xi2 + 576n - 48xi)? (1/n)?xi + 576n - 48 (?xi/n) × n)? (1/n)(627n + 576 - 48 × 25)? (1/n)( 627n - 624n)? (1/n)(3n)? The value of mean squarer deviation from mode is 3
Scan QR code to download our App for
more exam-oriented questions
OR
To get link to download app