Here's the question bank on all the mathematics topics.
The anti-derivative of \(\sqrt x - \frac {1}{\sqrt x}\) is equal to
Concept:Some useful formulas are:\(\rm ? x^n dx = \frac {(x^{n+1})} {(n+1)} +C; \ n?1\)Calculation:\(\rm \int(\sqrt x - \frac {1}{\sqrt x})\ dx\)= \(\rm \int\sqrt x \ dx - \int\frac {1}{\sqrt x}\ dx\)= \(\rm \frac{x^{(\frac{1}{2}+1)}}{\frac{1}{2}+1} - \frac{x^{(\frac{-1}{2}+1)}}{\frac{-1}{2}+1} + C\) , where C is the constant of integration= \(\rm \frac{2}{3}x^{\frac{3}{2}}-2x^\frac{1}{2} + C\)
Scan QR code to download our App for
more exam-oriented questions
OR
To get link to download app